

For each triangle, write down the three trigonometric ratios for the angle θ in terms of the sides of the triangle.
a C

Answers

a $\sin \theta=\frac{\mathrm{AB}}{\mathrm{AC}}, \cos \theta=\frac{\mathrm{BC}}{\mathrm{AC}}, \tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}$
b $\sin \theta=\frac{\mathrm{BC}}{\mathrm{AC}}, \cos \theta=\frac{\mathrm{AB}}{\mathrm{AC}}, \tan \theta=\frac{\mathrm{BC}}{\mathrm{AB}}$

Find the length of the unknown sides in triangle ABC .
Give your answer to 3 sf.

Answer

To find BC :

$\cos 30^{\circ}=\frac{B C}{8}$
$B C=8 \cos 30^{\circ}$
$\mathrm{BC}=6.93 \mathrm{~cm}$ (to 3 sf)

Finding the angles of a right-angled triangle

If you know the lengths of two sides in a right-angled triangle, you can find

- the length of the other side by using Pythagoras
- the size of the two acute angles by using the appropriate trigonometric ratios.

Find the angle marked θ in each triangle.

Give your answers correct to the nearest degree.

Answers
a $\tan \theta=\frac{8}{5}$

$$
\theta=\tan ^{-1}\left(\frac{8}{5}\right)
$$

b $\sin \theta=\frac{3}{6.5}$

$$
\theta=\sin ^{-1}\left(\frac{3}{6.5}\right)
$$

$$
\theta=27^{\circ}
$$

$$
\theta=58^{\circ}
$$

Triangle $A B C$ is isosceles. The two equal sides $A B$ and $B C$ are 10 cm long and each makes an angle of 40° with AC.
a Represent this information in a clear and labeled diagram.
b Find the length of AC.
c Find the perimeter of triangle ABC .

Answers

a

b

$\cos 40^{\circ}=\frac{\mathrm{AP}}{10}$

$$
\begin{aligned}
& \mathrm{AP}=10 \cos 40^{\circ} \\
& \mathrm{AC}=2 \times 10 \cos 40^{\circ} \\
& \mathrm{AC}=15.3 \mathrm{~cm}
\end{aligned}
$$

The diagonals of a rhombus are 10 cm and 5 cm . Find the size of the larger angle of the rhombus.

tan angle $\mathrm{OAB}=\frac{5}{2.5}$

Angle $\mathrm{OAB}=\tan ^{-1}\left(\frac{5}{2.5}\right)$
Angle $\mathrm{BAD}=2 \times \mathrm{OAB}$

$$
=2 \times \tan ^{-1}\left(\frac{5}{2.5}\right)
$$

Angle BAD $=127^{\circ}$ (to 3 sf)

Angles of elevation and depression

\rightarrow The angle of elevation is the angle you lift your eyes through to look at something above.
\rightarrow The angle of depression is the angle you lower your eyes through to look at something below.

From a yacht, 150 metres out at sea, the angle of elevation of the top of a cliff is 17°. The angle of elevation to the top of a lighthouse on the cliff is 20°. This information is shown in the diagram.
a Find the height of the cliff.
b Hence find the height of the lighthouse.

Answers

a Let x be the height of the cliff
$\tan 17^{\circ}=\frac{x}{150}$
$x=45.9 \mathrm{~m}$ (to 3 sf)
b Let y be the distance from the top of the lighthouse to the sea.

$$
\begin{aligned}
& \begin{aligned}
\tan 20^{\circ} & =\frac{y}{150} \\
y & =54.5955 \ldots \mathrm{~m} \\
\text { height of the lighthouse } & =y-x \\
& =8.74 \mathrm{~m}(\text { to } 3 \mathrm{sf})
\end{aligned}
\end{aligned}
$$

A boy standing on a hill at X can see a boat on a lake at Y as shown in the diagram. The vertical distance from X to Y is 60 m and the horizontal distance is 100 m .
Find:
a the shortest distance between the boy and the boat
b the angle of depression of the boat from the boy.

Answers

a $X Y^{2}=100^{2}+60^{2}$
$X Y=117 \mathrm{~m}$ (to 3 sf)
b $\tan \beta=\frac{60}{100}$

The angle of depression

$$
=31.0^{\circ} \text { (to } 3 \mathrm{sf} \text {) }
$$

